快速以太網(wǎng) (100Base-T) 采用一對(duì)數(shù)據(jù)發(fā)送和一對(duì)數(shù)據(jù)接收,傳輸速率均為 100Mbps。帶 Dcoding 的 4 針 M12 連接器非常適合快速以太網(wǎng)傳輸。8 針連接器僅用于更高的傳輸速率,例如以 1000Mbps 傳輸?shù)那д滓蕴W(wǎng) (1000Base-T)。對(duì)于千兆以太網(wǎng),所有四對(duì)線都用于在全雙工模式下發(fā)送和接收。IEC 11801:2002 Cat5 中規(guī)定的傳輸特性也涵蓋千兆以太網(wǎng)。
到目前為止,還沒有專門為以太網(wǎng)編碼的標(biāo)準(zhǔn) 8 針連接器封裝。帶有 8 針 M12 連接器的以太網(wǎng)電纜通常采用與傳感器-執(zhí)行器電纜相同的 A 編碼。這種方法消除了與為現(xiàn)場(chǎng)總線系統(tǒng)設(shè)計(jì)的 B 編碼 8 針連接器的任何混淆。
對(duì)于符合 IEEE 802.3af 的以太網(wǎng)供電應(yīng)用,有兩種主要的傳輸類型:電源電壓和數(shù)據(jù)要么一起傳輸(類型 1),要么分別傳輸(類型 2)。4 針 M12 連接器僅適用于類型 1 傳輸;電源電壓必須疊加在兩個(gè)數(shù)據(jù)對(duì)上。在采用 8 針連接器構(gòu)建的快速以太網(wǎng)系統(tǒng)中,兩個(gè)備用線對(duì)可用于分別傳輸電源電壓。
工業(yè)控制和自動(dòng)化網(wǎng)絡(luò)通常使用獨(dú)特的拓?fù)洹?/font>與多端口交換機(jī)為其他節(jié)點(diǎn)提供點(diǎn)對(duì)點(diǎn)鏈路的典型辦公室以太網(wǎng)“星形”網(wǎng)絡(luò)不同,工業(yè)網(wǎng)絡(luò)的控制層通?;诃h(huán)形布局。環(huán)形或菊花鏈簡(jiǎn)化了布線,并且可以擴(kuò)展以太網(wǎng)的覆蓋范圍,而無(wú)需支付基于光纖的系統(tǒng)的費(fèi)用。Mike Jones 檢查了設(shè)計(jì)的含義。
減少以太網(wǎng)環(huán)網(wǎng)所需的布線可為汽車和航空航天業(yè)帶來好處。更少的布線意味著重量的減輕,這對(duì)燃油效率有直接影響,因此也會(huì)影響總體成本。它也適合典型的自動(dòng)化單元的布局,其中生產(chǎn)往往在工廠車間以線性方式進(jìn)行。
通過輕量級(jí)塑料光纖 (POF) 引入以太網(wǎng),進(jìn)一步降低了金錢和重量成本。圖 1 顯示了一個(gè)示例應(yīng)用,它使用了一個(gè)分布在建筑物周邊的簡(jiǎn)單監(jiān)控系統(tǒng)。通過將每個(gè)攝像頭/傳感器連接為周邊的物理網(wǎng)絡(luò)環(huán),此類技術(shù)將避免需要一系列較長(zhǎng)的電纜,每條電纜都路由回中央交換機(jī)。它還可以更輕松地保持 IEEE 802.3 第 40.7 節(jié)中指定的 100m 鏈路限制。環(huán)形網(wǎng)絡(luò)中的基本構(gòu)建塊是 3 端口交換機(jī)。正如我們稍后將討論的那樣,以太網(wǎng)環(huán)需要管理以確保其中一個(gè)鏈路“斷開”以防止無(wú)休止的消息循環(huán)。
然而,實(shí)施以太環(huán)網(wǎng)有兩個(gè)主要問題;循環(huán)的管理和增加的延遲。環(huán)形網(wǎng)絡(luò)也限制了帶寬,但這可以被視為一個(gè)小問題,因?yàn)榭焖僖蕴W(wǎng)提供的 100Mbps 通常對(duì)于控制層網(wǎng)絡(luò)來說已經(jīng)足夠了。
與作為 IEEE 802.3 規(guī)范演變的基礎(chǔ)的令牌環(huán)網(wǎng)絡(luò)不同,實(shí)際上禁止將以太網(wǎng)配置為真正的環(huán)。以太網(wǎng)中的任何循環(huán)都將導(dǎo)致在無(wú)限循環(huán)中轉(zhuǎn)發(fā)的數(shù)據(jù)包重復(fù),從而迅速降低網(wǎng)絡(luò)的帶寬和效率。沒有專門處理以太網(wǎng)環(huán)管理的可用通用標(biāo)準(zhǔn)。專有的網(wǎng)絡(luò)市場(chǎng)解決方案提供產(chǎn)品差異化和各種技術(shù)可用于網(wǎng)絡(luò)環(huán)管理的實(shí)施。然而,在尋找基于標(biāo)準(zhǔn)的環(huán)管理解決方案時(shí),生成樹或快速生成樹協(xié)議可能符合要求。
生成樹協(xié)議 (STP) 在 IEEE 802.1d 中定義,通過阻止重復(fù)鏈接在任意兩個(gè)網(wǎng)絡(luò)節(jié)點(diǎn)之間形成單個(gè)活動(dòng)路徑,在以太網(wǎng)交換機(jī)的網(wǎng)狀網(wǎng)絡(luò)中創(chuàng)建“生成樹”。如果任何活動(dòng)鏈路發(fā)生故障,網(wǎng)絡(luò)中的冗余可以提供自動(dòng)備份路徑。
冗余鏈路的這種管理對(duì)于減少工業(yè)網(wǎng)絡(luò)的停機(jī)時(shí)間是非??扇〉摹?/font>例如,圖 2 中所示的網(wǎng)絡(luò)包含鏈路 2、3、4 和 5 之間的環(huán)路。這里 STP 將強(qiáng)制這些鏈路之一進(jìn)入阻塞狀態(tài)以中斷環(huán)路。在這種情況下,鏈路 4 被阻塞,然后可以充當(dāng)備用鏈路。如果任何其他活動(dòng)鏈路 2、3 或 5 隨后發(fā)生故障,協(xié)議將禁用阻塞狀態(tài)以啟用交換機(jī)之間的完全連接。請(qǐng)注意,在此示例中,鏈路 1 沒有冗余備份。
STP 由網(wǎng)絡(luò)中的每個(gè)交換機(jī)定期交換網(wǎng)絡(luò)狀態(tài)信息,每?jī)擅脒M(jìn)行一次。此信息在稱為網(wǎng)橋協(xié)議數(shù)據(jù)單元 (BPDU) 的特殊數(shù)據(jù)包中承載,由以太網(wǎng)多播地址 01:80:C2:00:00:00 標(biāo)識(shí)。協(xié)議的運(yùn)行分為三個(gè)階段:
選舉根交換機(jī);
查找到根交換機(jī)的所有路徑并確定“成本低”的路徑;

我司產(chǎn)品廣泛應(yīng)用于數(shù)控機(jī)械 冶金,石油天然氣,石油化工,
化工,造紙印刷,紡織印染,機(jī)械,電子制造,汽車制造,
塑膠機(jī)械,電力,水利,水處理/環(huán)保,市政工程,鍋爐供暖,能源,輸配電。
Unlike a token-ring network, which has been the basis for much of the IEEE 802.3 specification evolution, it is in fact forbidden to configure Ethernet as a true ring. Any loops within an Ethernet network will result in the duplication of packets that are forwarded in endless loops, quickly degrading the bandwidth and efficiency of a network. There is no available common standard that specifically deals with the management of Ethernet rings. Proprietary network market solutions provide product differentiation and various techniques can be used for the implementation of network ring management. However, when looking for a standards-based solution for ring management, Spanning Tree or Rapid Spanning Tree Protocol may fit the bill.
Spanning Tree Protocol (STP) is defined in IEEE 802.1d and creates a ‘spanning tree’ within a mesh network of Ethernet switches by blocking duplicate links to form a single active path between any two network nodes. The redundancy in the network can provide automatic backup paths if any of the active links fail.
This management of the redundant links is very desirable to reduce the down time industrial networks. For example, the network shown in Fig. 2 contains a loop between links 2, 3, 4 and 5. Here STP will force one of these links into a blocked state to break the loop. In this case link 4 is blocked, which can then act as the backup link. If any of the other active links 2, 3 or 5 subsequently fail, the protocol will disable the blocked state to enable full connectivity between the switches. Note in this example there is no redundancy backup for link 1.
STP is conducted by each switch in the network regularly exchanging information on the status of network, every two seconds. This information is carried in special data packets called Bridge Protocol Data Units (BPDUs), identified by the Ethernet multicast address 01:80:C2:00:00:00. There are three stages of operation of the protocol:
Electing a root switch;
Finding all paths to the root switch and determining the ‘least cost’ paths;